
Normalized NoSQL Graph Data Warehouse

Amal Sellami1, Ahlem Nabli1,2, Faiez Gargouri1

1 University of Sfax, MIRACL Laboratory,
Tunisia

2 Al-Baha University,
Kingdom of Saudi Arabia

sellami.amal91@gmail.com, ahlem.nabli@fss.usf.tn,
faiez.gargouri@isims.usf.tn

Abstract. In the Big Data warehouse context, a graph-oriented NoSQL
database system is considered as the storage model which is highly
adapted to data warehouses and online analysis. Indeed, the use of NoSQL
models allows data scalability and the graph store offers more flexibility
when storing and managing massive data. We propose, in this paper, an
approach to create a Graph-oriented Data warehouse by transforming
Dimensional Fact Model into Graph Dimensional Model. Then, we im-
plement the Normalized Graph Dimensional Model using java routines in
Talend Data Integration tool (TOS). The resulting warehouse was eval-
uated in term of ”Read Request Latency” using LDBC-SNB benchmark.

Keywords: Big data, NoSQL, graph databases, data warehouse, nor-
malized transformation rules, extract transform and load.

1 Introduction

During the last decade the explosion of social media has led to the generation of
massive volumes of user-generated data and consequently given birth to a novel
area of research, namely social network Data Warehousing. This emphasizes how
to extend classical data warehouse (DW) methodologies in order to deal with new
features of social network data, such as volume, dynamicity and heterogeneity.

A data warehouse is a database for online analytical processing (OLAP)
to support decision-making. It is often implemented in the relational database
management system (RDBMS). Intuitively, a well-designed DW requires a well-
planned logical design all updates and versions of a DW lead to a revision
of the logical design. Generally, the mapping from the conceptual to the log-
ical model is made according to three approaches: ROLAP (Relational-OLAP),
MOLAP (Multidimensional-OLAP) and HOLAP (Hybrid-OLAP). However, all
these models are inadequate when dealing with large amount of data which
needs scalable and flexible systems. However, in a constantly connected world,
data sources produce increasingly massive data, namely big data.

337 Research in Computing Science 149(10), 2020pp. 337–360; rec. 2020-06-22; acc. 2020-09-15



Traditional relational storage models have shown their limitations in terms
of storing and managing big data. Indeed, major players of the web such as
Yahoo, Google, Facebook, Twitter and LinkedIn were the first to point out the
limitations of the relational model. They found that relational DBMSs are no
longer adapted when dealing with an enormous amount of data in the context of
distributed environments. Usually, classical DW and On Line Analytical Process-
ing (OLAP) are comprised of a set of concepts like: facts, dimensions, measures
and dimension hierarchies, those are used for structured schema representations.
However, in case of web-scale applications, many of the dimensional information
may not be available in regular structure. Consequently, decision makers are in-
creasingly using NoSQL databases to implement their business solutions. Indeed,
as NoSQL database offer great flexibility, they can improve the classic solution
based on data warehouses (DW). In the recent years, many web applications are
moving towards the use of data in the form of graphs.

For example, social media and the emergence of Facebook, LinkedIn and
Twitter have accelerated the emergence of the NoSQL database and in particular
graph-oriented databases that represent the basic format with which data in
these media is stored. However, some new NoSQL (not-only-SQL) Database
Management Systems (DBMSs) have been recently proved to be effective Busi-
ness Intelligence solutions. They have proven some clear advantages with respect
to relational database management systems. Nowadays, the research attention
has moved towards the use of these systems for storing “big” data and analyzing
it. Different families of NoSQL DBMSs exist: Key-value, Column, Document
and Graph. A Key-value database is a collection of data without a schema and
organized as a collection of key-value pairs. Data is accessed using the key and its
value represents data. A Column database represents data with tables where each
row can present different attributes (different columns). A Document database
stores information as documents having a complex structure. A Graph database
is suited for applications in which there are more interconnections between the
data like social networks.

In this paper, we focus on one class of NoSQL stores, namely graph-oriented
systems. Graph-oriented systems are used for managing highly connected data
and perform complex queries over it. Not only data values but also graph
structures are involved in queries. Specifying a pattern and a set of starting
points, it is possible to reach an excellent performance for local reads by, first,
traversing the graph, then collecting and aggregating information from nodes
and edges. Graph-oriented databases are based upon graph theory (set of nodes,
edges, and properties).

We recall that data warehousing relies mostly on multidimensional data
modeling which is a conceptual model that uses facts to model an analysis
subject and dimensions for analysis axes. This conceptual model must then
be converted in a graph-oriented logical model. Mapping the multidimensional
model to relational databases is quite straightforward, but until now there is no
work that considers the direct mapping from the multidimensional conceptual
model to NoSQL logical models. The objective of this paper is to model the

338

Amal Sellami, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 149(10), 2020



normalized logical model of graph data warehouse using java routines in TOS.
Then we evaluated our resulting warehouse in term of ”Read Request Latency”.

This paper is organized as follows. Section 2 represents a literature review.
Section 3 introduces an overview of our approach. Section 4 presents the input
data source LDBC-SNB. Section 5 discloses our proposal for the data warehouse
schem design. Section 6 presents the graph logical model and the transformation
rules. Section 7 addresses the creation of Normalized GDM with TOS. Section
8 evaluates the created Normalized Grah Dimensional Model based on set of
queries. Section 9 concludes this paper by giving some future research directions.

2 Literature Survey

In the most of existing studies, three variant of transformation approch are
proposed (i) an approach that transforms a data warehousing concepts into
relational logical model or (ii) an approach that transforms relational data model
into NoSQL logical model; (iii) an approach that transfsorms a conceptual model
into specific NoSQL DB.

Transformation of data warehousing concepts into relational logical
model. Multidimensional databases are mostly implemented using RDBMS
technologies. Mapping rules are used to convert structures of the conceptual
level (facts, dimensions and hierarchies) into a logical model based on relations.
Moreover, many researchers have focused on the implementation of optimization
methods based on pre-computed aggregates (also called materialized views, or
OLAP cuboids). However, R-OLAP implementations suffer from scaling up to
very large data volumes (i.e. “Big Data”). According to Gartner, Big data
is high-volume, high-velocity and/or high-variety information assets that de-
mand cost-effective, innovative forms of information processing that enable en-
hanced insight, decision making and process automation. Big Data have led data
warehouses towards to distributed environments to store and analyze the large
amount of data. Research is currently under way for new solutions such as using
NoSQL systems is detailled in [1].

Transformation of a relational data base into NoSQL logical model.
Some studies have presented approaches that transform relational DB into NoSQL
DB. In the literature, a number of researchers have recognized the deficiencies
of the traditional ROLAP data storage and have proposed approaches for the
migration from relational databases to NoSQL ones. For example, in [2] two
proposals are defined which allow big data warehouses to be implemented under
the column oriented NoSQL model. The first one (normalized approach) uses
different tables for storing fact and dimension at physical level which requires
to achieve the join between tables when aggregation is performed. The second
one (denormalized approach) stores the fact and dimensions into one table,
which allows to avoid performing join between tables. Furthermore, authors in
[3] propose rules allowing the storage of a time dimension in HBase table. In
[4], authors propose a set of transformation rules for translating a relational
model to column-oriented model via HBase. In [5] an algorithm is introduced

339

Normalized NoSQL Graph Data Warehouse

Research in Computing Science 149(10), 2020



for mapping a relational schema to a NoSQL schema in MongoDB [6], as doc-
ument oriented NoSQL database. In [7], authors propose a method for trans-
forming object-relational database to NoSQL databases, more especially to the
document-oriented databases.

Transformation of a Conceptual Model into NoSQL DB. Few works
have focused on the transformation of the multidimensional conceptual model
to NoSQL logical one. In [8] authors tried to define logical models for NoSQL
data stores (oriented columns and oriented documents). They proposed a set
of rules to map star schema into two NoSQL models: column-oriented (using
HBase) and document-oriented (using MongoDB). In [9] , authors have proposed
a transformation rules that ensure the successful translation from conceptual
DW schema to two logical NoSQL models (column-oriented and document-
oriented). They also proposed two possible transformations namely: simple and
hierarchical transformations. The first one stores the fact and dimensions into
one column-family/collection. The second transformation uses different column-
families/collections for storing fact and dimensions while explaining hierarchies.
In [10] authors focused on simplifying the heterogeneous data querying in the
graph-oriented NoSQL systems. In [11] authors give a solution to perform join
between tables and performing aggregates from data warehouses implemented
according the normalized approach. It consists in the integrating of software and
tools such as Hive and Kylin in the ecosystem used for implementing the data
warehouse, and use their cube building operators. A recent work, [12] proposed a
data storage models for Graph cubes by introducing a document oriented model
and a column oriented model for storing a graph cube data and implementing
the roll up operation over the MongoDB document-oriented database and Cas-
sandra Column-oriented database. Authors in [13] have proposed already two
types of transformation from the multidimensional model to the graph-oriented
model. An other approach proposed in [14] propose an approach to create a
Graph-oriented Data warehouse by transforming Dimensional Fact Model into
Graph Dimensional Model (Denormalized Transformation).

Table 1 summarizes our literature review, based on following four criteria.
C1: Describe the tranformation type of data base uses. (i) from the relational
model to NoSQL; (ii) from the conceptual multidemnsional model to NoSQL.
C2: Describe the name of NoSQL database used.
C3: Describe the proposed set of rules for the transformation.
C4: Describe the experimentation used to evaluate his works.

To conclude on the literature review, the majority of approaches propose to
transform and create the data warehouse under two NoSQL models (Column and
Document oriented NoSQL model). There is no approach that directly transform
a data warehouse multidimensional conceptual model into a Graph logical model
in order to create a data warehouse using graph data base. The major interesting
advantage of the graph oriented model is related to the ability for supporting
complex queries without using joins. For that, we propose a new approach to
create data warehouse under graph oriented NoSQL data base.

340

Amal Sellami, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 149(10), 2020



Table 1. Summary of the literature review.

Works C1 C2 C3 C4

(Stonebraker 2012) NoSQL - - -
(Rocha L et al., 2015) Relational to NoSQL (Column-oriented) (Simple, Hierarchical) -
(Li et all., 2010) Relational to NoSQL (Column-oriented) (Simple) -
(Vajk T et all., 2013) Relational to NoSQL (Column-oriented) (Simple) -
(Dehdouh et all., 2014) Relational to NoSQL (Column-oriented) (Simple) X
(Aicha A et all., 2020) Relational to NoSQL (Document-oriented) - -
(Chevalier et all., 2015) (a) Conceptual to NoSQL (Column-oriented, Document-oriented) (Simple) X
(Chevalier et all., 2015) (b) Conceptual to NoSQL (Column-oriented) (Simple,Hierarchical) X
(Dehdouh et all., 2015) Conceptual to NoSQL (Column-oriented) (Simple) X
(Yangui et all., 2016) Conceptual to NoSQL (Column-oriented, Document-oriented) (Simple, Hierarchical) X
(Elmalki et all., 2018) Conceptual to NoSQL (Graph-oriented) - -
(Challal et all., 2019) Conceptual to NoSQL (Column-oriented,Document-oriented) (Simple,Hierarchical) X
(Sellami et all., 2018) Conceptual to NoSQL (Graph-oriented) (Simple) -
(Sellami et all., 2020) Conceptual to NoSQL (Graph-oriented) (Simple) X

3 Graph NoSQL Warehousing: Approach Overview

In this section, we describe our new approach to design and create data ware-
house building under graph-oriented system. This approach is composed of five
phases as shown in Fig.1.

Conceptual phase. The conceptual model is designed based on a set of
rules from Benchmark LDBC-SNB as data source.

Logical phase. The second phase ensure the transformation of the Con-
ceptual model of DW into the graph-oriented model based on set of rules . We
distingush two logical model(Normalized and Denormalized) based on the rules
used to transform dimensions.

ETL phase. In the third phase, we are interested on the identification and
the implementation of ETL operations. The ETL operations are implemented
under TOS. The result of this phase is two logical models (Normalized and
Denormalized) based on the graph paradigm.

Comparative Study. This phase has as input the two logical models and
perform a comparative study in order to choose the best logical model based on
two metrics: Write-Request-Latency (WRL) and Read-Request-Latency (RRL).
WRL measures the loading time for a single write, and RRL measures the
response time of a query.

Reporting Queries. In this phase, we propose to use Cypher graph query
language to create and analysis a report of the graph oriented data warehouse.
The visualization of the query is done using powerBI.

4 LDBC’S Social Network

As input data source we used the Linked Data Benchmark Council Social Net-
work Benchmark. The LDBC SNB is generated using data generator (DATA-
GEN) evolved from the S3G2 generator.The LDBC SNB aims at being a com-
prehensive benchmark by setting the rules for the evaluation of graph-like data
management technologies. LDBC SNB is designed to be a plausible look-alike of
all the aspects of operating a social network site, as one of the most representative

341

Normalized NoSQL Graph Data Warehouse

Research in Computing Science 149(10), 2020



Fig. 1. Approach overview.

and relevant use cases of modern graph-like applications. Its schema has 11
entities connected by 20 relations, with attributes of different types and values,
making for a rich benchmark dataset.

A detailed description of the schema is found at [15, 16]. Fig.2 shows the
LDBC data schema in UML. The schema defines the structure of the data used
in the benchmark in terms of entities and their relations. Data represents a
snapshot of the activity of a social network during a period of time. Data includes
entities such as Persons, Organisations, and Places. The schema also models the
way persons interact, by means of the friendship relations established with other
persons, and the sharing of content such as messages (both textual and images),
replies to messages and likes to messages. People form groups to talk about
specific topics, which are represented as tags.

5 Data Warehouse Schema Design

We propose, in this section, the design of the data warehouse schema based
on a set of rules proposed in [17]. These rules applied on the LDBC-SNB
Benchmark are used to identify the multidimensional concepts precisely of fact,
measures,dimensions and hierarchies.

5.1 Determination of Fact and Measures

An analyzed subject represented by the concept of fact. Each fact characterized
by one or more measure representing the indicators analyzed. To extract the fact
and its measures, we apply the following rules:

342

Amal Sellami, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 149(10), 2020



Fig. 2. The LDBC-SNB data schema.

– Identification of a fact. We are interested in our work in the analysis of
the forum. So we obtain the fact forum.

– Identification of measures. The measures are generally numeric and
correspond to the ”how much” or ”how many” aspects of a question. Each
measure in a fact should have a default aggregation (or derivation) rule. The
data retreived from LDBC-SNB allows us to obtain the following measures:
Number of Post, Number of Member, Number of Moderator, Number of
Tag, Number of comment and Number of like. Table 2 presents the name
of the class / relationship / attributes in our benchmark, the name of the
determined measure and its description.

Table 2. Forum Measures.

Class / RlationShip / Atributes Name Measures Name Description

Post / Container of nbPost The total number of a Post in forum
Person / Has member nbMembre The total number of member in forum
Person / Has moderator nbModerator The total number of forum moderator
Tag / Has tag nbTag The total number of Tag representing in the forum’s
Message / Reply of Comment nbComment The total number of comment in forum

343

Normalized NoSQL Graph Data Warehouse

Research in Computing Science 149(10), 2020



5.2 Determination of Dimensions

The extraction of dimensions is based on a type of object called basic object.
A dimension represents a single set of objects or events in the real world. Di-
mensions are the qualifiers that make the measures of the fact table meaningful,
because they answer the what, when, and where aspects of a question. Based on
these questions, we obtain four dimensions for forum which are: Person, Date,
Message and Tag (Table 3).

Table 3. Determination of dimensions from LDBC-SNB.

Questions Basic Object

What contains the forum? Message
Who moderats the forum? Person
When the forum is published? Date
Which words are used to describe the forum? Tag

For each determined dimension, we detail in the following subsections its
parameters. Each attribute or class not chosen as a measure can be an attribute
for a dimension specially the categorical attributes.

Determination Date Dimension Attributes. The date is an information
that is saved in each record of the data source. The date dimension is a manda-
tory dimension for analysis and interrogation. The definition of the granularity
of the date dimension is based on the need of decision makers, according to which
granularity leads its analysis.Table 4 shows the attributes composing the date
dimension. The dimensional elements for the Date dimension are day, month
and year. Day has a roll-up hierarchical relationship with month which has a
roll-up hierarchical relationship with year. Day has an attribute of id date. Fig.3
(a) illustrates the date dimension according to the DFM formalism.

Table 4. Attributes of Date dimension.

Atributes Name Description Type

IdDate The identifier of the date Identifier
Day Day of date Level 2 parameter
Month Month of date Level 3 parameter
Year Year of date Level 4 parameter

Determination Person Dimension Attributes. The person is an ab-
stract entity that represents a person. It contains various information about
the person as well as network related information. The attributes of Person class
are: id, firstName, lastName, gender, birthday, email, speaks, browserUsed, loca-
tionIP and creationDate. As relationships with person we retreived ”islocatedin”
and ”studyat”. The relationship ”islocatedin” describe a person and their home

344

Amal Sellami, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 149(10), 2020



located. There is a class place with attributes name and url. City, country and
continent are a sub-class of a place. The relationship ”studyat” describe the
organisation of the person studied. The class organization have the attributes
name, url and have to sub-class university, company.

So, we can describe the Person dimension (DPerson) with parameters IDPerson

along with the weak attributes (Firstname, Lastname, Birthdate, Email, CreationDate),
organized using four hierarchies Hgendre, Hspeaks, Hplace and Horganisation.
Table 5 illustrates the set of attributes making up the Person dimension. Fig.3
(b) illustrates the person dimension according to the DFM formalism.

Table 5. Attributes of Person dimension.

Atributes Name Description Type

IdPerson The identifier of the person Identifier
FirstName The first name of the person Weak attribute
LastName The last name of the person Weak attribute
Birthday The birthday of the person Weak attribute
Email The email of the person Weak attribute
CreationDate The date the person joined the social network Weak attribute
Gender The gender of the person Level 2 parameter
Speaks The set of languages the person speaks Level 2 parameter
OrganisationName The name of the organisation Level 2 parameter
Url The url of the organisation Weak attribute
Type The type of the organisation Level 3 parameter in the organisation hierarchie
Label The label of the organisation Weak attribute
PlaceName The name of the place Level 2 parameter
City The city of the place Level 3 parameter in the place hierarchie
Country The country of the place Level 4 parameter in the place hierarchie
Continent The continent of the place Level 5 parameter in the place hierarchie

Determination Message Dimension Attributes. The message is an
abstract entity that represents a message created by a person. The attributes of
Message entity: creationDate, browserUsed, locationIP, content and length. Post
and comment are a sub-class of Message, it is defined as a type of the message.

Posts contain either content or imageFile, always one of them but never both.
Table 6 shows all the set of attributes composing the message dimension. Fig.3
(C) illustrates the message dimension according to the DFM formalism.

Table 6. Attributes of Message dimension.

Atributes Name Description Type

IdMessage The identifier of the message Identifier
CreationDate The date the message was created Weak attribute
Content The content of the message Weak attribute
Length The length of the content Weak attribute
TypeMessage The type of the message Level 2 parameter
BrowserUsed The browserused of sent the message Level 2 parameter

345

Normalized NoSQL Graph Data Warehouse

Research in Computing Science 149(10), 2020



Determination Tag Dimension Attributes. Tag is used to specify the
topics of forums. The attributes of Tag entity: id, name and url. Table 7 shows
all the set of attributes composing the Tag dimension. Fig.3 (d) illustrates the
Tag dimension according to the DFM formalism.

Table 7. Attributes of Tag dimension.

Atributes Name Description Type

ID The identifier of the tag Identifier
Name The name of the tag Weak attribute
Url The URL of the tag Weak attribute
Type The type of the tagclass Level 2 parameter

Fig. 3. Dimensions of our LDBC-SNB data warehouse.

From the previous steps, we obtain the conceptual model of data warehouse
schema generated from the data source LDBC-SNB (Fig.4).
The mapping from the conceptual to the logical model is made according to three
approaches: ROLAP (Relational-OLAP), MOLAP (Multidimensional-OLAP)
and HOLAP (Hybrid-OLAP). All these models are inadequate when dealing with
large amount of data which need scalable and flexible systems. As an alternative,
NoSQL systems begin to grow. In our case we are oriented to use the NoSQL
graph-oriented databases.

346

Amal Sellami, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 149(10), 2020



Fig. 4. Multidimensional Conceptual Model: DFM.

6 Graph Logical Model

Graph technology has been the fastest growing category of databases in re-
cent years. In the world where connected data represents a new source for
companies, graph technology appears as the obvious option. Therefore, NoSQL
Graph-oriented databases are perfectly adapted to voluminous, heterogeneous
and massively interconnected data due to its flexible structure capable to repre-
senting elegantly correlated and dynamic data.

This kind of database are based upon graph theory. Data is represented as
nodes, edges and attributes, which allows the modeling of different interactions
between data. Graphs modeling is ubiquitous in most social networks, semantic
web and bio science (protein interactions . . . ) applications.

Graph-oriented systems belong within the “schema less” framework, that
consists in writing data without any prior schema restrictions; i.e., each node
and each edge have its own set of attributes, thus allowing a wide variety of
representations. This flexibility generates heterogeneous data, and makes their
interrogation more complex for users, who are compelled to know the different
schema of the manipulated data.

It is useful for inter-connected relationship data. The relational database
performed better on executing queries when the amount of data is relatively
limited. However, as queries became complex, the graph database outperformed
the relational one. For the conceptual modeling, an entity-relationship diagram is
readily translated into a Property Graph Model, making a conceptual model for
graph databases necessary. It helps to understand which entities can be logically
connected to which other entities. Graph databases support only binary relation-

347

Normalized NoSQL Graph Data Warehouse

Research in Computing Science 149(10), 2020



ships. On the other hand, graph modeling is much easier than for a relational
data model because real world objects are explicit in terms of connections.

The data modeling in NoSQL graph-oriented systems consists in representing
the database as a graph. The reason why graph databases are an interesting
category of NoSQL is because, contrary to the other approaches, they actually go
the way of increased relational modeling, rather than doing away with relations.
that is, one to one, one to many, and many to many structures can easily be
modeled in a graph-based way. In a way, a graph database is a hyper-relational
database, where JOIN tables are replaced by more interesting and semantically
meaningful relationships that can be navigated (graph traversal) and/or queried,
based on graph pattern matching. The data modeling in NoSQL graph-oriented
systems consists in representing the database as a graph.

Formally, we can represent a NoSQL Graph-oriented database as G (V,
E, P) where:

– V is a set of node that represent the entities,

– EG= E1,. . . ,Ey is a set of edges that represent the relation between the
nodes,

– P is a set of properties attributed to each component of the graph-oriented
database (node/arc). A property is formed by a couple of a key and value
pair.

Node. Each node has property and label. Formally, a node, is defined by (idV ,
PV , LV ) where:

– idV is the identifier of the nodes,

– PV is a set of properties that describe a node,

– LV is a set of labels or etiquette attached to the node. In order to express
the semantic of the nodes, usually a node can have 0 or more labels written
as LG= L1,. . . ,Lq.

Relation. The relations connecting the nodes can eventually have properties.
Formally, a relation is defined by (idR, V iR, V oR, TR, PR) where:

– idR is the identifier of the relation,

– V iR is the identifier of the incoming node,

– V oR is the identifier of the outgoing node,

– TR is the type of relation that bears the name of the relation,,

– PR is a set of properties of a relation.

In order to implement the data warehouses within the graph-oriented NoSQL
model, we propose two transformations namely DLM (Denormalized Logical
Model), and NLA (Normalized Logical Model). Each one differs in terms of
the structure and the attribute types used when mapping is performed. In the
following we details the two transformations rules. Each transformation load to
a graph logical model.

348

Amal Sellami, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 149(10), 2020



6.1 Transformation rules: Normalized logical model

Recall that a data warehouse schema consists of fact with measures, as well
as a set of dimensions with attributes, we map the dimensions according to
its attributes and the facts according to its measures. The normalized logical
transformation ensures the mapping from the multidimensional model of DW to
NOSQL Graph logical model, while explaining hierarchies. In this transformation
each fact and dimension are transformed into nodes according the following rules:

Rule 1: Transformation of a fact and its measures to the graph-
oriented model.

Fact/Measures transformation. Each fact is transformed into a node
with the label of the node takes the type of the concept of the multidimensional
model which is ‘fact’ then we add the name of the fact as a second label at the
same node. Each measure is transformed by a property of Fact node.
RF.1. Each fact F ∈ FMS is transformed into a node, defined by V (idV , PV ,
LV ) where:

– Label l1 is the type of the multidimensional concept: l1=’Fact’ / LV ={l1},
– Label l2 is the name of the fact: l2=NF / LV =LV ∪ {l2},
– Each measure mi ∈MF is represented as a property with p←mi/P

V =PV ∪{p}.

Rule 2: Transformation of a dimension and its attributes(Strong and
Weak) to the graph-oriented model.
Rule.2- Dimension/Parameters transformation. Each dimension is trans-
formed into a node with the label of the node takes the name of the concept of
the multidimensional model (in this case is the dimension). Then, we use the
name of the dimension as a second label at the same node. After, the identifier is
transformed into a property in the node. Finally, any weak attribute associated
to the identifier is transformed into a property in the same node. After that,
each weak attribute is represented in the form of property.
RD.1. Each name and identifier of a dimension is transformed into a node V
(idV , PV , LV ) where:

– Label l1 is the type of the multidimensional concept: l1=’Dimension’ /
LV ={l1},

– Label l2 is the name of the dimension: l2=ND / LV =LV ∪ {l2},
– The identifier ai modeling by a property p with p ←ai/P

V =PV ∪{p},
– Each weak attribute aw associated to ai is transformed into a property p

with p ←aw/PV =PV ∪{p}.

Rule.3- Hierarchies transformation.A hierarchy consists of a set of parame-
ters and a link of precedence between parameters. Each parameter is transformed
into a node with the label of the node takes the name of the concept of the
multidimensional model (in this case is the parameter). Then, we allow the
name of the parameter as a second label at the same node. After that, each
weak attribute is represented in the node in the form of property. Finally, each
link of precedence is transformed into a relation.

349

Normalized NoSQL Graph Data Warehouse

Research in Computing Science 149(10), 2020



RH.1. Transformation of parameter / Modeling the link of precedence
between parameter
RH.1.1 Transformation of parameter

Each parameter ai is transformed into a node V (idV , PV , LV ) where:

– Label l1 is the type of the multidimensional concept: l1=’Parameter’ / LV ={l1},
– Label l2 is the name of the parameter: l2=ai / LV =LV ∪ {l2},
– Each weak attribute aw associated to ai is transformed into a property p

with p ←aw/PV =PV ∪{p}.

RH.1.2. Transformation of link of precedence between parameter
Each ai → ai−1 ⊂ HD is transformed into a relation R, defined by (idR, V ıR,

V øR, TR, PR) where:

– V ıR is the node represented ai,
– V øR is the node represented ai−1,
– The type t1 is the name of the relation: t1=’Precede’/TR={t1}.

Rule 4: Transformation of the link between the fact and dimension to
the graph-oriented model.
Rule.4- Link fact-dimension transformation. Each link between fact and
dimension is represented as a relation having as node source the node modeling
the fact and as node destination the node modeling the dimension. The relation
has as name ’link fact-dimension’.
RFD.1. Each link fact-dimension is transformed into a relation R, defined by
(idR, V ıR, V øR, TR, PR) where:

– V ıR is the node represented the fact,
– V øR is the node represented the dimension,
– The type t1 is the name of the relation: t1=’link fact-dimension’/TR={t1}.

As output of this transformation is normalized logical model for graph data base
and a correponding table with full documentation of all transformation opera-
tions. This table will be used in ETL process for modeling and implementing the
transformation rules within ETL. As NoSQL DBs are schema-less, this increases
the need for extending the existing ETL tool in order to be able to create data
warehouse while integrating data. ETL tool should be adapted with the constant
changes, to produce and to modify executable code quickly. An example of the
correpondence table for the normalized logical model is presented in Table 8.

Table 8. Example of correspondence table for NLM.

Object source Type Operation Target Type Data

Forum Fact Rule1: Fact Transf Forum Node
Nb Tag Measures Rule1: Measures Transf Nb Tag Property
Message Dimension Rule2: Dimension Transf Message Node
Place Weak attribute Rule3: Hierarchie Transf Place Node

350

Amal Sellami, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 149(10), 2020



The application of the normalized logical transformation rules on the dimen-
sional fact model of Fig. 4 provides the logical model of a data warehouse using
the graphic formalism illustrated by Fig.5.

Fig. 5. Normalized Graph Dimensional Model.

6.2 Transformation Rules: Denormalized Logical Model

We recall that, the denormalized Logical transformation ensures the mapping to
NoSQL model while highlighting the concepts of the Multidimensional Schema
(MS) but without detailing the hierarchies. In this transformation we use 3 rules
as follows:

Rule 1: Transformation of a fact and its measures to the graph-
oriented model.
Rule.1- Fact/Measures Transformation. Each fact is transformed into a
node with the label of the node takes the type of the concept of the multidi-
mensional model which is ‘fact’ then we add the name of the fact as a second
label at the same node. Each measure is transformed by a property of Fact node.

Rule 2: Transformation of a dimension and its attributes (Strong and
Weak) to the graph-oriented model.
Rule.2: Dimension/Parameters Transformation.
Each dimension is transformed into a node with the label of the node takes
the name of the concept of the multidimensional model (in this case is the
dimension). Then, we allow the name of the dimension as a second label at

351

Normalized NoSQL Graph Data Warehouse

Research in Computing Science 149(10), 2020



the same node. After, the identifier is transformed into a property in the node.
Finally, any weak attribute associated to the identifier is transformed into a
property in the same node. Each parameter is transformed into a property in
the node (dimension). After that, each weak attribute is represented in the form
of property.

Rule 3: Transformation of the link between the fact and dimension
to the graph-oriented model.
Rule.3: Link fact-dimension Transformation.
Each link between fact and dimension is represented as a relation having as node
source the node modeling the fact and as node destination the node modeling
the dimension. The relation has as name ‘link fact-dimension’.

The application of the proposed denormalized Logical transformation rules
on the dimensional fact model is illustrated in Fig.6.

Fig. 6. Denormalized Graph Dimensional Model.

As we previously mentioned, in this level, the correspondence table is gen-
erated to keep trace of different transformations. Table 9 presents an excerpt
of the generated correspondence table (CT). This table is useful for the ETL
process.

352

Amal Sellami, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 149(10), 2020



Table 9. Example of correspondence table for DLM.

Object source Type Operation Target Type Data

Forum Fact Rule1: Fact Transf Forum Node
Nb Post Measures Rule1: Measures Transf Nb Tag Property
Message Dimension Rule2: Dimension Transf Message Node
IDPerson Weak attribute Rule2: Parameter Transf Place Property

7 Implementing the Normalized logical transformation
Rules: ETL Process

Traditional ETL is a type of data integration from multiple sources (structured
and semi-structured data), that follows three steps (extraction, transformation,
and loading to a data warehouse or data mart). Its goals are the organization
and the storage of data in unified format frequently as a data warehouse.
To load data in the Graph NoSQL DWs, we choose to use the data integra-
tion tool ”Talend for Big Data”. This tool allows extracting data from large
and heterogeneous data sources and integrates them into NoSQL database. In
the context of our work, data integration is done according to our transfor-
mation rules. These rules are implemented using ETL routines in the same
tool. The key component of the ETL process is the Job. It is a graphical
design, of one or more components connected together such as: tFileInput-
Delimited (PersonFile, DateFile, ect.), tMap, tNeo4jConnection, tNeo4jRow,
tNeo4jOutputRelationship. This components are described as follows:
-tFileInputDelimited reads a given file row by row with simple separated fields.
It purpose to open a file and read it row by row to split them up into fields then
sends fields as defined in the Schema to the next Job component, via a Row link.
-tNeo4jOutputRelationship receives data from the preceding component, and
writes relationships into Neo4j. It is used to output relationship into a Neo4j
database.
-tNeo4jOutput receives data from the preceding component, and writes the data
into Neo4j. It is used to write data into a Neo4j database, and/or update or
delete entries in the database based on the index defined.
-tNeo4jRow is the specific component for this database query. It executes the
stated Cypher query onto the specified database. The row suffix means the
component implements a flow in the Job design although it doesn’t provide
output. It depending on the nature of the query, tNeo4jRow acts on the data
(although without handling data).
-tMap is one of the core components of Talend Studio and is used very often
in Jobs. The tMap component is primarily used for mapping input fields to
output fields and transforming the input data in the Expression Builder of the
corresponding output column.

For implementing the graph-oriented DW, we use Neo4j. The graph model
in Neo4j consists of a Property, only edges can be associated with a type and
Edges can be specified as directed or undirected. Neo4j uses the following index

353

Normalized NoSQL Graph Data Warehouse

Research in Computing Science 149(10), 2020



mechanism: a super reference node is connected to all the nodes by a special
edge type “REFERENCE”. This actually allows to create multiple indexes to
distinguish them by different edge types.

All these components are used to create the data warehouse as depicted in
Fig.7.

Fig. 7. Creation of Graph DW under TOS.

An example of the number of rows, reading time and loading time (in seconds)
of some input files are detailled in Table 10.

The created data warehouse is visualized under Neo4j as presented in Fig.8.
As shows in Fig.8, it is composed of 29192 noeuds and 39800 relationShips.

8 Evaluation

Cypher is Neo4j’s graph query language that allows users to store and retrieve
data from the graph database. The Cypher query language depicts patterns of
nodes and relationships and filters those patterns based on labels and properties.

Like SQL, Neo4j CQL has provided some aggregation functions to use in
RETURN clause. It is similar to GROUP BY clause in SQL. We can use this

354

Amal Sellami, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 149(10), 2020



Table 10. Obtained results.

Input File Number Rows Reading Time Loading Time

PersonFile 1527 rows 0,3s 0,8s
TagsFile 16079 rows 0,72s 0,96s
PostFile 135700 rows 0,76s 0,96s
CommentsFile 151042 rows 0,9s 1,2s
ForumFile 13750 rows 0,5s 0,90s
PlaceFile 1495 rows 0,9s 1,2s
DateFile 1095 rows 0,2s 0,8s
OrganisationFile 2258 rows 0,6s 1,2s
Fact ForumFile 965800 rows 4,98s 9,2s

Fig. 8. Normalized Graph NoSQL DW.

RETURN + Aggregation Functions in MATCH command to work on a group
of nodes and return some aggregated value.

The aggregate function can take multiple values and can calculate the aggre-
gated values for them. Four levels of pre-aggregates are computed on top of the
benchmark generated data. Precisely, at each level we aggregate data respec-
tively on: the combination of 4 dimensions all combinations of 3 dimensions, all
combinations of 2 dimensions, all combinations of 1 dimension, 0 dimensions (all
data). At each aggregation level, we apply aggregation functions: max, min, sum
and count on all dimensions.

In this paper we evaluate the created GDW based on 4 queries described in
Table 11.

We measure the efficiency of the implemented NoSQL Graph DW with the
metric Read-Request-Latency (RRL). RRL measures the response time of a
query. Table 12, summarize the result of graph analysis oriented data warehouse
using cypher query language (1 to 4).

355

Normalized NoSQL Graph Data Warehouse

Research in Computing Science 149(10), 2020



Table 11. Query description.

Request Neo4j Langage

Query 1 MATCH(p:Person)
MATCH(Fact:FactForum)
MATCH(Mes:Message)
RETURN Fact.nbpost
ORDER BY p.gender, Mes.browserUsed;

Query 2 MATCH(p:Person)
MATCH(Fact:FactForum)
MATCH(Mes:Message)
RETURN Fact.nbpost
ORDER BY p.langue, Mes.browserUsed;

Query 3 MATCH(p:Person)
MATCH(Fact:FactForum)
MATCH(Mes:Message)
MATCH(D:Date)
RETURN Fact.nbpost
where p.gender=’female’, D.year=’2012’
ORDER BY p.gender, Mes.browserUsed, D.month;

Query 4 MATCH(T:Tag)
MATCH(Fact:FactForum)
MATCH(Mes:Message)
RETURN Fact.nbtag
ORDER BY T.nametag, Mes.browserUsed;

Table 12. Query analysis based in RRL.

Number Records Request RRL(s)

80000 Query 1 0,21
Query2 0,25
Query3 0,51
Query 4 0,32

100000 Query 1 0,29
Query2 0,33
Query3 0,64
Query 4 0,46

The visualization of the query analysis of graph oriented data warehouse
using cypher query language is done using powerBI.

Query1: This query gives the number of post by gender and browserUsed. Fig.9
shows the result of Q1 inspired on the Graph DW. Query2: This query gives
the number of post by langue, browserUsed and year. Fig.10 shows the result
of Q2 inspired on the Graph DW. Query3: This query gives the number of post
by month name and browserUsed, with a clause in the property gender and
the year. Fig.11 visualize the result of Q3 inspired on the Graph DW. Query4:
This query gives the number of moderator by name of the tag and browserUsed.

356

Amal Sellami, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 149(10), 2020



Fig. 9. Number of post by gender and browserUsed.

Fig. 10. Number of post by langue, browserUsed and year.

Fig.12 visualize the result of Q4 inspired on the Graph DW.

357

Normalized NoSQL Graph Data Warehouse

Research in Computing Science 149(10), 2020



Fig. 11. Number of post by month name and browserUsed, with a clause in the
property gender and the year.

Fig. 12. Number of moderator by name of the tag and browserUsed.

9 Conclusion

As big data continues down its path of growth, a major challenge of the decisional
information systems has become how to deal with the explosion of data and its
analysis when the data warehouses are implemented.

358

Amal Sellami, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 149(10), 2020



Consequently, the implementations of data warehouses are oriented towards
the new technologies in order to allow more scalability and flexibility for storing
and handling data. Since the relational systems are lack of scaling and inefficient
of handling big data it is vital to extract transform and loading the data into
graph NoSQL data warehouse.

We propose, in this paper, an approach to create a Graph-oriented Data ware-
house. We identified two transformations named normalized and denormalized.
We have focused on the normalized transformation. Then, we have implemented
the Normalized Graph Dimensional Model using java routines in Talend Data
Integration tool (TOS).

After that, we evaluated our approach using a set of OLAP queris. As
future work, we aim to carry a comparative study in order to choose the best
transformation between normalized and denormalized one.

References

1. Stonebraker, M.: New opportunities for new SQL. Commun. ACM 55(11), 10–11
(2012). http://doi.acm.org/10.1145/2366316.2366319.

2. Rocha, L., Vale, F., Cirilo, E., Barbosa, D., Mourão, F.: A framework for migrating
relational datasets to NoSQL. Procedia Computer Science 51, 2593–2602 (2015)

3. Li, C.: Transforming relational database into HBase: A case study. In: ICSESS’10.
pp. 683–687. IEEE (2010)

4. Vajk, T., Fehér, P., Fekete, K., Charaf, H.: Denormalizing data into schema-free
databases. In: CogInfoCom’13, pp. 747–752, IEEE (2013)

5. ONeil, P., ONeil, E., Chen, X., Revilak, S.: The star schema benchmark and
augmented fact table indexing. In: Performance Evaluation and Benchmarking,
vol. 5895, pp. 237–252. Springer Berlin Heidelberg (2009)

6. Dehdouh, K., Boussaid, O., Bentayeb, F.: Using the column oriented NoSQL model
for implementing big data warehouses. In: Proceedings of the 21st International
Conference on Parallel and Distributed Processing Techniques and Applications,
pp. 469–475 (2015)

7. Aggoune, A., Namoune, M. S.: A Method for Transforming Object-relational to
Document-oriented Databases. In: International Conference on Mathematics and
Information Technology, Adrar, Algeria (2020)

8. Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, T.: Implementing
Multidimensional Data Warehouses into NoSQL. In: International Conference on
Enterprise Information Systems David Harel. First-Order Dynamic Logic. Lecture
Notes in Computer Science, Vol. 68. Springer-Verlag, New York, NY (1979).
https://doi.org/10.1007/3-540-09237-4.

9. Yangui, R., Nabli, A., Gargouri, F.: Automatic Transformation of Data Warehouse
Schema to NoSQL Data Base: Comparative Study. Procedia Computer Science,
vol. 96, p. 255-264 (2016)

10. El Malki, M., Ben Hamadou, H., Chevalier, M., Péninou, A., Teste, O.: Querying
Heterogeneous Data in Graph Oriented NoSQL Systems. Big Data Analytics and
Knowledge Discovery - 20th International Conference, DaWaK (2018)

11. Chavan, V., Phursule, R.: Survey paper on big data. International Journal of
Computer Science and Information Technologies, 5(6), 7932–7939 (2014)

359

Normalized NoSQL Graph Data Warehouse

Research in Computing Science 149(10), 2020



12. Challal, Z., Bala, W., Mokeddem, H., Boukhalfa, K., Boussaidy, O., Benkhelifa, E.:
Document-oriented versus Column-oriented Data Storage for Social Graph Data
Warehouse. (2019)

13. Sellami, A., Nabli, A., Gargouri, F.: Transformation of Data Warehouse Schema to
NoSQL Graph Data Base. In: 18th International Conference on Intelligent Systems
Design and Applications (2018)

14. Sellami, A., Nabli, A., Gargouri, F.: Graph NoSQL Data Warehouse Creation.
In: 22nd International Conference on Information Integration and Web-based
Applications and Services (iiWAS) (2020)

15. Prat, A., Averbuch, A.: Benchmark design for navigational pattern match-
ing benchmarking. http://ldbcouncil.org/sites/default/files/LDBC D 3.3.34.pdf
(2020)

16. Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A., Prat, A.,
Pham, Minh-Duc, Boncz, P.: The LDBC social network benchmark: Interactive
workload. In: Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pp. 619–630 (2015)

17. Moalla, I., Nabli, A., Bouzguenda, L., Hammami, M.: Data warehouse design
from social media for opinion analysis: the case of Facebook and Twitter. In:
13th ACS/IEEE International Conference on Computer Systems and Applications
(2016)

360

Amal Sellami, Ahlem Nabli, Faiez Gargouri

Research in Computing Science 149(10), 2020


